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AFIT/GAE/ENY/07-D03 

Abstract 

 Titanium / titanium boride functionally graded 6”x1”x1” beams were subjected to 

a four-point beam test in order to critique the value of several measurement techniques.  

Also, finite element analysis results were compared with experimental values and general 

observations about the experiment were recorded.  Uniform 85% TiB / 15% Ti and 

uniform commercially pure titanium specimens were also subjected to the same loading 

conditions as a control.   Techniques used include digital image correlation, fiber optic 

strain gauging, strain gauging, and differential infrared thermography techniques.  The 

strain data results were compared with one another and to linear finite element models.  It 

was found that several of the techniques had distinct advantages and disadvantages for 

usage in a layered functionally graded system.  Furthermore, the finite element showed 

good agreement with results when overlaid with several of the measurement techniques.
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AN EXPLORATION OF SEVERAL STRUCTURAL MEASUREMENT 

TECHNIQUES FOR USAGE WITH FUNCTIONALLY GRADED MATERIALS 

 

INTRODUCTION 

1.1 Background 

Functionally graded materials (FGM) are an unexplored frontier in research in 

that countless permutations of materials can be combined to form a myriad of new 

material systems. Much computational work regarding FGMs has been performed.  For 

example, Erdogan and Chiu created a continuum model to solve buckling instability 

problems for FGMs. [Erdogan, 1996] Gu and Asara proposed a model to measure crack 

deflection for brittle functionally graded materials and found that material grading has a 

lesser effect around material boundaries. [Gu, 1997] Reddy analyzed the differences in 

deflections and stresses using a nonlinear finite element.  Material gradients were 

approximated using a power law approximation.[Reddy, 2000] Work regarding free and 

forced vibrations by Yang and Shen found that at elevated temperatures, when 

considering FGMs in relation to an isotropic substance, FGMs do not necessarily have 

intermediate natural and dynamic responses.  [Yang, 2000].  

In most instances, little laboratory testing has been performed to validate 

predictive FGM models. However, some examples do exist.  Rodriguez-Castro et. al., 

tested the microstructure and mechanical behavior of Al A359/SiCp.  Tensile and fracture 

properties and SEM micrographs were gathered to characterize the system. [Rodriguez-

Castro, 2002]  Atri, Ravichandran, and Jha used an impulse method to measure elastic 

properties through vibration.  [Atri, 1999]  From their work, they determined that a 
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titanium-titanium monoboride-titanium dirboride system displayed increased modulus 

properties from that of the standard titanium.   

The most similar study involving the Ti-TiB material system to this work was 

performed by Ma and Tan measuring the flexural strength and fracture toughness of the 

material.   Although Ma and Tan’s work is closely related, many differences exist.   

Fundamentally, Ma and Tan used only 5 mm (0.196 inches) thick beams while in this 

study 25.4 mm (1.0 inches) were analyzed.  Ma and Tan were also more interested in the 

processing and characterization of the functionally graded system.  They studied the 

effect of the particle size on sintering, the effect of the silicon carbide additive on the 

densification of the titanium diboride rich layer, and the effect of the particle size and 

additive on the mechanical performance of the functionally graded material. [Ma, 2001]   

In contrast to Ma and Tan’s work, the main purpose of this investigation is less 

about understanding the material behavior of the material system and more about 

determining the strengths and weaknesses of several novel measurement techniques for 

usage with a complex composite system – in this case, a functionally graded material.  

However, general failure observations about the structure and comparison with finite 

element analysis were also performed because of the uniqueness of the material system.  

Another benefit of the finite element analysis was that they were used as a baseline for 

use in conjunction the experimental results.  

The four-point bend was chosen as the mechanism to observe the mechanical 

behavior of an FGM system.  The Ti-TiB material system was chosen because the work 

performed was part of a larger effort to study the material system for possible usage in 

quick turn-around hypersonic vehicles and other extreme thermo-acoustic environments.   
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1.2 Motivation 

As part of the United States’ Air Force’s vision to establish global vigilance, 

reach, and power, the Air Force Research Laboratory (AFRL) must help meet the 

warfighter’s needs – both current and projected.  This effort is in part a building block to 

provide the warfighter with a ‘war-winning technology’ and in part a project to spawn 

other research topics. 

 The main idea of using FGMs over conventional materials is that the internal 

composition can be catered to meet the requirements of any given system.   Although 

much of this technology has not been fully proven, the internal structure of the material 

could be laid out to form complex electrical circuits, hybrid high temperature pressure 

vessels, or thermal structures.  However, before complicated applications are fabricated 

out of FGMs, it is imperative that rudimentary structural questions be answered before 

commencing with larger scale use.  This work is just one step in being able to properly 

design using a functionally graded material system. 

On a grander scale, the ultimate goal of this research is to help determine if the 

titanium / titanium boride system can be used within the context of the structure of a 

reusable, hypersonic launch vehicle.  In the case of the space shuttle, the aluminum 

substructure is shielded by a thermal protection system (TPS) barrier consisting of several 

layers of primers, tile, adhesives, fibers, and coatings. The main advantage of using and 

FGM configuration would be that the underlying metallic structure could possibly 

withstand higher temperatures and reduce TPS size requirements. Also, weight could be 

further minimized by tailoring the constituent makeup of each component based upon the 

load and stress interactions present in different areas of the spacecraft.   
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1.3 Outline 

 This section provides an overview of the preceding chapters.  Chapter II gives an 

overview of basic bending theory, finite element analysis, and other measurement 

techniques.  Chapter III provides the details of the experimentation.  Chapter IV lists the 

results of the tests and analyzes any significant findings.  Chapter V concludes the thesis 

and discusses and future work created from the experimentation. 
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THEORETICAL AND EXPERIMENTAL BACKGROUND 

2.1 Basic Bending Theory 

The well-known Euler-Bernoulli beam equation for the normal stress can be 

determined along any distance y from the neutral axis: 

σxx = - My/ I 
 

σxx = stress 
M = moment 
y = distance from neutral axis 
I = second moment of inertia 

 

From this basic relationship, combined with the shear and moment diagram from an 

idealized four point-bend, a simple approximation of the stresses for a beam structure can 

be determined.   

 

 

Figure 1:  Shear and moment diagram of 4-point bend specimen 

 From this simple analysis, accurate stress results for the experimental setup 

cannot be established; however, general bending behavior for the four-point bend 
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configuration can be roughly identified.  When looking at the region perpendicular to 

loading along the at the top and bottom surfaces, it is anticipated that one side of the 

beam will be subjected in compression and the opposite will be in tension.  Furthermore, 

a region of varying moment exists in the zones between where the opposing loads are 

applied.  Finally, a zone of constant moment exists in the medial region.   
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2.2 Finite Element Analysis Approach 

Finite element uses a geometrically similar model containing multiple, linked, and 

simplified representations of discrete regions.   Theories of elasticity are invoked where 

equations of equilibrium, compatibility relationships, and constitutive relationships are 

applied to each element, and a system of simultaneous equations is created.   These 

equations are then solved for unknown values using linear algebra techniques.  In a 

structural analysis, unknown values typically include stresses, strains, and displacements. 

Because of the low expense and excellent reputation of numerical modeling, finite 

element analysis (FEA) was chosen as a foundation for comparison with the functionally 

graded system in 4-point bend.  Also, FEA can extract information on the entire structure, 

whether internal or external.  This is particularly important because most of the 

laboratory measurement techniques are bound to only the surface, particularly with the 

chosen geometry in this experiment.   

There are also many drawbacks to this type of analysis.  First, when modeling, 

several assumptions have to be made regarding the boundary conditions and material 

makeup.  In the real four-point bend test, the loading does not occur in a completely 

uniform pattern; therefore, when interpreting FEA results around the geometry roller 

errors could be quite high.  In a functionally graded material, the material properties 

assigned to the structure can create a large discrepancy between the modeling and 

laboratory acquired data.  During this work, the properties were assumed to be 

instantaneously transitioned because the system was originally assembled in seven 

discrete layers when fabricated by the manufacturer.  However, in a more complicated 

graded FGM system, this assumption would not necessarily suffice.   
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2.3 Measurement Techniques 

2.3.1 Strain Gages 

 Strain gages have two common purposes:  determining the state of strain at an 

averaged point in order to determine stress or to act as a strain-sensitive transducer 

element.  In this work, the first of the two uses was utilized.  The theory of operation of 

the strain gages works on the premise that when the length of the foil of the gage is 

increased the electrical resistance is also increased.  When combining this relationship 

with the null-balance condition and Ohm’s law from the voltage-sensitive Wheatstone 

bridge, the desired unknown strain quantity can be determined. 

 

2.3.2 Fiber Optic Strain Gages 

 Each fiber uses several Fiber Bragg Gratings (FBGs), a device created by etching 

the core of the fiber with a laser.  When laser light is passed through the fiber, each 

grating reflects back only certain wavelengths.  When in the presence of mechanical 

changes, these reflections are modified and can therefore be used to indirectly measure 

strain.  Gratings in each fiber are spaced at a frequency of ten millimeters.  The total 

length of each FBG is approximately six millimeters in length.  This region is the area 

averaged by each sensor.  Furthermore, the system is only capable of picking up changes 

relative to the lengthwise direction of the fiber.   
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 Fibers were attached to the surface of each specimen using a common adhesive.  

Therefore, some error is induced because when interpreting results the strain is assumed 

to be measured at the surface of the metallic structure and not on the outer skin.   

 

2.3.3 Digital Image Correlation 

 Digital image correlation (DIC) or the white light speckle technique is an optical-

numerical method used to take full-field strain and displacement and strain measurements 

of the surface.  The digital in the DIC system uses a silicon grid of individual light 

sensitive cell or pixels to acquire light intensities reflected back from the desired surface.  

Then, two images of the specimen at different states, deformed and undeformed, are 

compared by searching for a subset of the undeformed image in the deformed image in 

order to maximize a given similarity function.  The displacement result is an average of 

the displacements of the pixels inside each subset.  These displacements can then be 

calculated into strain measurements.   

 Digital image correlation can be used with a fair amount of ease in order to 

achieve reasonable results when in two-dimension.  However, three-dimensional usage of 

the system is more complicated as the extra dimension adds another layer of complexity 

to the image recognition routines and the numerical algorithms necessary to properly 

measure displacements to determine strains.  It has also been seen that the speckle pattern 

on a specimen will adversely affect the results on a specimen if not properly sized and 

distributed.  [Lecompte, 2006]  Although speckling could be a factor when using digital 

image correlation, the speckle pattern was not optimized during the course of 
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experimentation because the initial results yielded good agreement with analytical models 

without further tweaking. 

 

2.3.4 Differential Infrared Thermography 

Any substance becomes slightly warmer or cooler when acted upon by a force.  If 

the substance is changed by a tensile force the substance becomes slightly cooler and vice 

versa.  This phenomenon is known as the thermoelastic effect.   

 The equation which describes the thermoelastic effect is as follows: 

ΔT = - α * T / ρ / Cp * ( Δσx + Δσy)  
 

α = coefficient of thermal expansion 
T = absolute temperature 
ρ = density 
Cp = specific heat 
Δσx, Δσy = stress amplitude 

 
 In other words, if a minute change in temperature which caused the thermoelastic 

effect is detected, the change in the addition of ‘x’ and ‘y’ direction stresses can be 

determined.   

 Thermoelastic stress analysis is the term used to describe the mapping over a 

surface of a structure of the temperature amplitude over a varying load using an infrared 

camera.  As a means to better the measurements, the readings are time averaged with 

continuous dynamic loading.  When mapping, the differing colors correspond to different 

amounts of thermal change and thus varying values of surface stress. 

 Differential infrared thermography is an excellent technique for viewing stresses 

in a four-point bend configuration in that it yields high resolution, statistically accurate 

images when properly acquired.  However, this imaging technique is not without its 
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shortcomings.  When acquiring images, the system requires the room temperature to 

remain at a fairly constant level and background interference to be relatively minimal.  

The system can detect small temperature variations on the order to 0.05°C.  Therefore, it 

would be very difficult to use this system in most natural environments.  Adequate 

acquisition time must also be considered when running the tests.  Originally, the samples 

were run for only seven seconds of acquisition time and yielded poor, ‘fuzzy’ results.  

When this time was changed to three minutes, much cleared images were acquired.  

Another drawback of the system is the usage of liquid nitrogen necessary for the sensor 

array.   If liquid nitrogen is not properly refreshed at the appropriate intervals, images can 

become blurred.   As an alternative, other commercial systems are available which use a 

compressor to cool the sensor array instead of the liquid nitrogen.   

 Differential infrared thermography also has limitations on the field data it can 

acquire during testing.  For example, edge effects were present.  These effects were 

caused by the detection of surfaces heat irradiating from the bend specimen and the 

discrepancy between the specimen and the background.  This effect is present in the 

thermography photos depicted in Section 4.4.  Although the software has a corrective tool 

to help lessen these effects, these anomalies still add another element of error to the 

approximation of stresses.  This is problem more problematic when the area of interest 

lies directly on the boundary such as in the case of a crack.   

 When dealing with functionally gradient materials, this technique is not ideal 

because a strain gage is required to determine the reference stress value in a region of 

constant stress and modulus.   Since the FGM is a non-homogenous structure, in many 

instances, no good region will exist to lay down a strain gage and determine the 
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multiplier necessary to convert data from pixel units into stress.  Technically, a gage can 

be put down to estimate the strain over a region; however, the amount of error created 

from this mismatch would have been very difficult to properly differentiate. 

 Finally, since the thermographic technique can only detect the addition of the 

stresses in two directions perpendicular to the camera’s focal direction, it is difficult to 

differential the ‘x’ and ‘y’ direction stresses in most bi-axial and tri-axial configurations 

without any outside information.  In this work, this limitation is particularly problematic 

because the thermography system cannot be directly compared to the other strain and 

displacement measurement devices. 
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2.4 General Fracture Behavior of Metals and Ceramics 

In a ceramic fracture, the beginning of the crack propagation can be traced to the 

fracture origin, the area of the strength-reducing flaw which initiated failure.  The next 

prominent region which surrounds the fracture origin is the fracture mirror, an area whose 

unevenness and surface roughness are much lower than the remaining surface.  However, 

depending on the material and loading condition this morphology may vary.  A higher 

fracture stress can cause the fracture mirror to completely disappear.  If the stresses were 

to decrease due to decrease in external load or crack branching, the surface may again 

appear smooth.  On the other hand, if the crack entirely propagates under lower stresses, 

the whole surface may appear relatively smooth. [Mencik, 1992] 

 In metallic structures, four principal fracture modes exist:  dimple rupture, 

cleavage, fatigue, and decohesive rupture.  Dimple fracture typically happens under a 

single load or tearing in which depressions or dimples in the microstructure occur from 

microvoids. Depending upon the loading conditions, the microstructure will exhibit a 

unique dimple pattern.  Transgranular cleavage occurs at well defined planes in which the 

crystal structure is either body centered cubic (bcc) or hexagonal closed packed (hcp).  

The mode results from triaxial stresses at a high rate of deformation and at lower 

temperatures.  Fatigue failure is typically detected by striations on the crack face.  

Finally, decohesive rupture is present along weak material surfaces such as grain-

boundary precipitation, low-strength phases, defect structure, hydrogen embrittlement, 

and stress-corrosion cracking.  [ASTM, 2001] 
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TEST PROCEDURE 

3.1 Description of Specimens 

3.1.1 Specimen Fabrication and Acquisition 

 The functionally graded Ti/TiB specimens were acquired from Cercom, Inc of 

Vista, CA.  Despite the relatively simple geometry, Cercom was contracted to manufactur 

the final rectangular specimen because of unknown intricacies involved with machining 

Ti/TiB FGMs.  Along with the FGM specimens, cp Ti and 15% Ti/ 85% TiB were 

included along with the first shipment from the company.  The 15% Ti / 85% TiB 

layering was chosen by the manufacturer as the maximum allowable amount of TiB.    

Due to the damage of the pure Ti/TiB caused by ceramic composite brittleness, five new 

specimens had to be fabricated over and reshipped.  Specimens were fabricated at 

Cercom using a hot-isostatic pressing process (HIP). 

 

3.1.2 Physical Description 

 On the sides of each specimen, the individual material layers can be seen with the 

naked eye showing the layed gradation.  From the naked eye, differentiating the titanium 

and titanium boride layers was sometimes difficult as the color of the two materials was 

fairly close.  Also, the coloring between layers did not necessarily reflect back a 

predictable color.  In other words, in certain light, the shading in the middle appeared 
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darker than either of the other top and bottom layers.  

 

Figure 2:  Side profile of Ti/TiB specimen 

 

3.1.3 Specimen Design 

 The dimensions of each specimen are nominally 1”x 1”x 6”.  Thicker specimens 

were opted over more conventional, thinner, bending specimens for two primary reasons.  

The thicker specimens allowed for the geometric nonlinearities of the loading to be 

neglected.  In addition, by having thicker layers, layering errors would become less 

significant so that the modeling results would be more accurate.   

The functionally gradient materials were created with the following layer stacking 

sequence: 

Layer#             % TiB               Thickness (in) 
1                      85                     0.125 
2                      75                     0.125 
3                      60                     0.125 
4                      45                     0.125 
5                      30                     0.125 
6                      15                     0.125 
7                      0 (pure Ti)          0.25 
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Figure 3: Pictorial representation of Ti/TiB layering and Young’s Modulus 

Distribution 
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3.2 On ASTM Standards for Bending Tests 

Because the material system is unique to the applicable testing procedures, no one 

unique standard could be followed.  Furthermore, the specimen design was determined 

prior to evaluating each standard and does not necessarily follow any one set of 

guidelines.  Closely applicable standards include:  ASTM D 790, ‘Standard Test Methods 

for Flexural Properties of Unreinforced and Reinforced Plastics and Insulating Materials’;  

ASTM E 290, ‘Standard Test Methods for Bend Testing of Material for Ductility’; and 

ASTM D 6272 ‘Standard Test Method for Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending’.   

Deviations from the standards included specimen geometry, test setup, and loading 

conditions.  Furthermore, no guidelines were present in order to handle metallic-ceramic 

composite structures. 
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3.3 Equipment and Setup 

3.3.1 Experimental Setup and Equipment 

 For digital image correlation, a Correlated Solutions® digital image correlation 

system was connected to a personal computer loaded with Vic-Snap and Vic-2D [Figure 

4: A, B], the company’s correlation software.  In the case of differential infrared 

thermography, the DeltaTherm® system by Stress Photonics® was used to acquire stress 

field images.  [Figure 4: B] The strain gages were attached to a National Instruments’ 

SCXI-1000 system.  [Figure 4: C] When running fiber optic strain gage tests, the Luna 

Innovations Distributed Sensing System® was attached to a one-meter fiber. (Fiber ID: 

001.0-B-001.0-0.01-46-SP)  [Figure 4: D] 

As a means to bend the Ti/TiB specimens, an MTS test frame was used.  In the 

test frame, an MTS 609 Alignment Fixture is used to grip the bending test fixture.  The 

Sintech 20/D machine is controlled by Testworks for Windows: Version 3.02.  [Figure 4: 

C]   

The three / four point bending test fixture was purchased from Wyoming Test 

Fixtures and was designed to the specifications of ASTM D790 and D6272. [Figure 4: E]  

The fixture is shown in Figure 5 with a specimen prepared for digital image correlation.  

Although these specifications are not fabricated specifically for functionally graded 

materials, the fixture was used because no better alternative existed.   

Finally, an external halogen light source was used to enhance the quality of digital 

image correlation results. [Figure 4: F] 
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Figure 4: Diagram of experimental setup 

A:  Test Computer  

B:  Digital Image Correlation or Differential Infrared Thermography Camera 

C:  Test Computer, Controller and Strain Gage Acquisition System 

D:  Fiber Optic Strain Gage System 

E:  Test Frame, 4-Point Bend Fixture, and Specimen 

F:  External Halogen Light Source (DIC only) 
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Figure 5: Four point bend fixture with 6”x1”x1” specimen prepared for DIC 
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3.3.2 Specimen Preparation 

Before testing began, each specimen was prepared to accommodate electrical 

resistance strain gages, a fiber optic gage, and digital image correlation. On the top 

surface, the area in compression, two uniaxial gages were laid to detect the ‘x’ direction 

stresses.  On the bottom surface, the area in tension, a single rosette was laid to determine 

both the ‘x’ direction stresses but also any rotational misalignment.  Uniaxial and rosette 

gages had a gage length of 0.125”, a gage factor of 2.11 and a grid resistance of 350Ω. 

(MM CEA-06-125-UN-350; MM CEA-06-125-UR-350)  Because a strain gage would 

span over differing material regions, the decision was made to omit strain gages from the 

front and back surfaces to allow room for other measurement techniques.  When laying 

strain gages, standard protocol was followed including sanding, degreasing, conditioning, 

neutralizing, curing, and soldering.  In both cases, a cyanoacrylate adhesive was used to 

secure the strain gages to the specimen.   

Due to the strain algorithm utilized by the digital image correlation system, the 

front each specimen was coated with a thin coating of white latex paint and then speckled 

with black latex paint on the front surface.  For specimens using differential infrared 

thermography, a matte, black finished was applied to the front.  Finally, in the case of the 

fiber optic gages (LUNA 001.0-B-001.0-0.01-46-SP), horizontal lines were inscribed on 

the back surface at a location 1/8” from the top surface, in the middle, and 1/8” from the 

bottom surface.  Again, a cyanoacrylate adhesive was used to secure the gages.   

Figure 6 summarizes the preparation required for each data acquisition technique. 
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Figure 6: Specimen preparation for strain gages, fiber optic strain gages, 
differential infrared thermography, and digital image correlation
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3.4 Testing Method 
3.4.1 Test Matrix 

 The complete and actual test matrixes are listed in Appendix A and Appendix B, 

respectively.   For future reference, the term ‘strong’ refers to specimens loaded with the 

85% TiB / 15% Ti predominantly in compression.  The term ‘weak’ refers to specimens 

loaded with 100% Ti predominantly in compression. Steel specimens included in the 

matrix were used as dummy specimens.  

 

3.4.2 Experimental Procedure 

 In four-point bending, specimens were loaded under constant amplitude loading.  

The maximum and minimum loads were varied such that Pmax – Pmin = 1000 lbs.  A 

ramp-up rate of 100 lbs/sec was used during testing.  The test was run in load control 

mode using a 20 kip load card.  Each specimen was subjected to loads at levels of 2.5K, 

(2.0-3.0K), 5K (4.5-5.5K), 10K (9.5-10.5K), 15K (14.5-15.5K), or 19.5K (19.0-20.0K), 

respectively.  A variable amplitude load was chosen in order to accommodate the 

differential infrared thermography technique. 
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3.5 Finite Element Analysis 

3.5.1 Description of Finite Element Models 

 The commercial finite element package ABAQUS was used to create a numerical 

model of the beam configuration.  Seven discrete layers were chosen to represent the 

layered FGM structure in spite of interlayer diffusion zones present in the real structure.  

The manufacturer’s elastic constants were used in the analysis.  Linear hexahedron 

(C3D8) elements were used to mesh the model with the length of each symmetric 

element measuring 1/24”.  Furthermore, a quarter-model was assumed as four-fold 

symmetry was present in the geometry.  Loads applied at each roller were assumed to be 

uniformly distributed over a region ¼” x 1”. (¼” x ½” on the actual model)  

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Meshed finite element quarter model of beam
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RESULTS AND DISCUSSION 

4.1 Material Deformation and Failure 

 Upon evaluating the failed specimens many unique observations can be concluded 

from the failure surfaces.  When viewing the commercially pure titanium structure, it can 

be seen that gross plastic deformation occurred primarily in the medial region between 

the two upper rollers.  During the testing this deformation occurred at an applied load of 

less than fifteen thousand pounds.  Due to the nature of the loading spectrum, a more 

exact value was not extracted.  The maximum applied load for these tests was twenty 

thousand pounds.    

 

Figure 8: Deformed uniform Ti specimen after loading 

For the uniform 85% TiB ceramic composite specimens, the specimens 

catastrophically ruptured at approximately five thousand pounds.    The fracture 

morphology reveals that the ceramic failed from a classic brittle fracture as the fracture 

mirror can clearly be seen in the lower regime of the specimen.  Towards the upper zone, 

lies a characteristic ‘lip’ prevalent in all of the uniform TiB failures. 
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‘Lip’ 

Initiation Site and 
Fracture Mirror 

Figure 9: Failed 85% TiB / 15% Ti specimen 

When the layer FGM was loaded in the weak configuration, the geometry with the 

ceramic in tension also ruptured catastrophically at a load level similar to that of the 

uniform 85% TiB.  The major difference being that the characteristic ‘lip’ seen in the 

uniform ceramic composite was not present.  Instead, the pure titanium layer created a 

‘skin’ which prevented the specimen from completely breaking into two discrete parts. 

(The ‘weak’ Ti/TiB structure is pictured inverted from the loading.) 

 

Ruptured 85% TiB / 15% Ti Layer 

100% Ti Layer 

Figure 10: Failed ‘weak’ FGM 

In a separate test in which the loading rate was increased significantly (~30 x 

load/sec) to completely sever the specimen, the complete fracture surface of the weak-

configured FGM could be observed because the Ti layer was completely sheared.  The 
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layering can be clearly seen internally as the surface varies from a very smooth, 85% TiB 

to a grainy 100% Ti layer.  In the uniform titanium layer, pitting characteristic of a 

ductile overload was present.  Furthermore, this ductile pitting does not extend beyond 

the region of the pure titanium allude to the fact that the failure behavior of the titanium 

is drastically modified when processed with the ceramic, even in small quantities. It can 

also be seen that the actual layer stacking sequence does not coincide with the layering 

specifications.  This can probably be attributed to packing error and shrinkage during the 

sintering process. 

 

100% Ti Layer 

 

Figure 11: Fully split ‘weak’ FGM 

 Finally, when the FGM in the strong configuration was loaded up to twenty-

thousand pounds, no signs of rupture or gross plastic deformation could be detected. 

[Figure 12] This behavior proves that the ‘strong’ FGM configuration is in fact stronger 

than the ‘weak’ configuration. Therefore, when strictly comparing failure strength for 

design, the strong-configured FGM is an improvement over both uniform titanium and 

85% TiB in this configuration.   
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Figure 12:  ‘Strong’ functionally graded beam after testing 
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4.2 Strain Gage Results 

 Although strain gages were laid on most of the specimens during testing, only 

limited data was acquired.  [Figure 13]  Although the four-point bend test allowed for 

strain gages to be placed on the upper surface of the specimen, small amounts of room on 

the upper surface in which the wire had to be redirected caused the wiring to oftentimes 

prematurely delaminate.  Furthermore, the weak configuration specimens and uniform 

85% TiB / 15% Ti specimens were susceptible to rapid failure and at the desired 10K 

loading level.   

 On two ‘strong’ specimens, F05 and F10, data was acquired with reasonable 

accuracy. From the results, it can be seen that the specimen follows a linear trend up until 

thirteen hundred μstrain at which the gage delaminated.  Additionally, the data for the 

compressive zone demonstrates a higher degree of scatter than its tensile counterpart.  It 

is speculated that this was caused by the gage measuring compression being disrupted by 

the upper roller’s close proximity. 
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Figure 13: Strain gauge data for specimens F05 and F10 
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4.3 Digital Image Correlation Results 

 As the strong configuration would be the preferential geometry to use in a real 

application, the strain field for the strong FGM was analyzed for εxx on the undeformed 

shape by comparing the finite element analysis to the digital image correlation.  Strain 

field data was only gathered for the regions in between the two lower rollers in order to 

give the camera a better focus on the speckle pattern.  

In Appendix C, digital image correlation results were plotted at three arbitrary 

times during the course of the test run in order to improve the statistical significance.  

Contours were plotted using fourteen color increments with varied upper and lower 

bound values at +/- 3000, 2000, 1000, 500, and 0.  Zero runs are nominally zero as 

contour values were actually set to +/- 1e-10.  Field values which exceed the upper bound 

were colored red.  Likewise, negative field values which go below the lower bound were 

colored purple.  The color green represents values which are closest to zero in the color 

contour.   

Upon observing the images, a disjuncture between the strain data and the digital 

image can be observed at the boundaries.  This is a byproduct of the digital image 

correlation routine and not of the cropping used to select the area of interest.    

 When viewing the results, the upper region correctly displays a compressive zone 

and the lower region correctly displays a tensile zone in accordance with the basic 

bending theory.  Also apparent is that the compressive zone is much smaller than the 

tensile zone in the ‘strong’ FGM.   

As the contour is decreased to zero, this is verified by the neutral axis shifting 

from an ideally neutral position to one closer to the compressive surface. [Figure 14]  An 
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averaged line can be used to estimate the position of the neutral axis at a region 

approximately 3/8” from the top surface.    However, in reality, the ‘neutral axis’ is really 

a ‘neutral boundary’. 

 

Figure 14: Estimated neutral axis for Ti/TiB FGM 
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4.4 Differential Infrared Thermography Results 

Upon comparing the differential infrared thermography results for the pure 

titanium, ‘strong’ FGM, and 85% TiB / 15% Ti, the characteristic compressive and 

tensile zones can be seen on the top and bottom surfaces of each image.  Furthermore, the 

highly compressive zones surrounding the fixture’s rollers are also made obvious.  In the 

titanium image, a blemish caused by a coating anomaly can also be observed.  [Figure 

15] 

 

 

 

 

 35 



 

Figure 15 – Differential infrared thermography digital image results for Ti, Ti/TiB 
FGM, and 85% TiB / 15% TiB at 2.5K 

 

 Upon extracting the pixilated quantities of stress from the ‘half-line’, a line 

parallel to the loading axis through the front surface of the middle of the specimen, it can 

be seen that the ‘strong’ FGM results do not lay at an intermediate position between the 

uniform titanium and the uniform 85% TiB / 15% Ti.  [Figure 16]   Instead, a bowing is 

present.  This occurs because of the unequal sharing of stress caused by the modulus 

mismatch and the layer stacking sequence.   
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Figure 16: Comparison of stresses from differential thermography at 2.5K for Ti, 

‘strong’ FGM, and 85% TiB / 15% Ti 
 

Thermography results could not be directly overlaid to finite element stress results 

because the stepped gradation prevented the calculation of stress to pixilation ratio.  A 

strain gage would have had to span overtop multiple layers.  Although this could have 

been used to create a rough approximation of the conversion between pixels and stress, 

the accuracy of the differential thermography system would be blemished by the weak 

conversion.   Another usage would have been if a strain gage small enough to fit overtop 

each layer could have been found, each layer could have been accurately converted.  

Therefore, the results were normalized based upon the maximum stress in each material 

set in order to form a comparison. [Figure 17] 

 37 



-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

D istance in 'Y ' D irect io n

Ti FEM

Ti DT

FGM strong FEM

FGM strong DT

TiB FEM

TiB DT

 
Figure 17: Comparison of normalized stresses for FEM and differential infrared 

thermography at 2.5K for Ti, ‘strong’ FGM, and 85% TiB / 15% Ti 
 

When normalizing, the uniform Ti and 85% TiB exhibit the exact same behavior, 

a linear relationship, because the internal stresses are identical for a homogenous material 

in the linear regime.  The experimental results show similar agreement except with some 

deviation:  the Ti was slightly above and the 85% TiB was slightly below the FEM 

results.  On the other hand, the functionally graded materials showed significant 

deviation, particularly around the compressive zone within the regime of the ceramic 

composite.  This may be caused in part by the gross material property scatter of the 

Ti/TiB composite.  Appendix D shows the variation in elastic modulus scatter from two 

separate sources. 

Because of the lack of conversion factor, a stress magnitude was determined from 

the finite element results along the same plane.   [Figure 18] From these results, the 

predicted stresses for the homogenous materials are between +/-12 ksi and +8 to -15 ksi 

for the ‘strong’ FGM when loaded at 2.5K.  It can also be observed the neutral axis for 

the FGM will be shifted to increase the total size of the tensile zone as predicted from 
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experimental digital image correlation results.  In essence, the stiffer structures are taking 

away more stress from the less rigid layers. 
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Figure 18: Comparison of stresses (σxx + σyy) for FEM and differential infrared 
thermography at 2.5K for Ti, ‘strong’ FGM, and 85% TiB / 15% Ti 
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4.5 Fiber Optic Strain Gage Results 

Limited amounts of data were acquired using the fiber optic strain gages because 

the propensity of the fibers to break during handling.  These fibers are better suited for 

usage in plates and panels where disruptive bending would be unlikely to occur once the 

fiber had been laid.  Also, the number of passes able to be performed by a single fiber 

was limited by the ability of the fiber to ‘loop’.  Based upon the length of the one meter 

fiber, six passes were to be performed.  This proved difficult because of the tight radius 

of the loop incurred having the fibers closely together.   

Originally, some of the fiber optic gages were placed parallel to the loading axis. 

Unfortunately, because the fiber sensors only determined an average reading every six 

millimeters at the location of each sensor, the configuration was useless and didn’t 

provide meaningful readings to quantify the interlayer effects.  Additionally, the strains 

and stresses in the ‘y’ direction were so low around the mid-plane parallel to the loading 

direction that meaningful strain data would have been more easily acquired when dealing 

with higher stresses.  In order to achieve more meaning results to study interfacial zones, 

smaller Bragg Grating regions would have to be created. 
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4.6 Comparison of FEA and Digital Image Correlation Results 

When overlaying the finite element analysis results to the digital image 

correlation, a great amount of correlation can be determined.  Although the tensile 

regions show some disconnect at higher strain contour values, this can in part be 

attributed to overlay error between the two techniques. Appendix E summarizes the 

overlay of digital image correlation and finite element analysis results. Probably the most 

convincing evidence of the finite element analysis successfully predicting the elastic 

behavior of the functionally graded Ti/TiB is the excellent determination of the shape of 

the compressive zone.  [Figure 19]  Not only did the magnitudes appear to very 

accurately align but also a ‘double hump’ was accurately mirrored.   

 

  

 

 

FEA ‘humps’ 
D.I.C. ‘humps’ 

Figure 19:  Overlay of FEM and DIC results for ‘strong’ configuration at 10K 

FEA / D.I.C. 
Overlay Mismatch 
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4.7 Overlay of Several Measurement Techniques 

The strain field results along a horizontal line 1/8” from the bottom surface were 

compared for the digital image correlation, fiber optic strain gages, and finite element 

analysis results. [Figures 20, 21]  Strain gage data was also overlaid as an upper bound.  

Multiple images and multiple line splices were used to gather data for the digital image 

correlation in order to help reduce error caused by camera misalignment.  Data from the 

fiber optic strain gage and strain gage were determined from specimen F05.  

 Figure 20:  Slice of profile of specimen used to gather overlaid data 

From these results, it can be seen that the digital image correlation most closely 

relates to the finite element analysis results.  The error in the fiber optic strain gaging can 

be attributed to the tendency of the fiber to bow on the specimen during application.  

Furthermore, because sensors locations were not accurately determined, the data could be 

shifted on the ‘x’ axis in order to further collapse the results. 
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Figure 21: Overlay of Several Measurement Techniques 
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 Certain assumptions can be made in order to better collapse this data onto the 

finite element analysis results.  First, since the actual sensor location for each fiber was 

not accurately found at least four millimeters of shifting in the ‘x’ direction could occur.  

Next, because of errors caused by the electronic process of extracting linear data from a 

digital image in digital image correlation, the theoretical results for the finite element 

analysis can be shifted 1/24” to match this error. In this case, FEA was modified instead 

of the digital image correlation because the results could be moved to a precise location.  

Furthermore, since the fiber optic Bragg fibers had some degree of movement caused by 

a ‘bowing’ effect when laid, this assumption also holds true in conjunction with the fiber 

gage results.  When viewing the corrected overlay, a move convincing fit of the data is 

now more plausible. [Figure 22] 
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4.8 Stress Field Comparison of Strong and Weak Configurations 

 When comparing the stress fields of the ‘strong’ and ‘weak’ configurations, many 

differing characteristics became apparent.  In the σxx field for the ‘strong’ configuration, 

the compressive stresses in the upper, compressive zone have higher absolute stresses 

than the lower, tensile zone.  On the contrary, for the weaker configuration, the lower 

tensile region experiences higher absolute stresses.  It can be concluded that the stiffer 

layers are withstanding higher amounts stress. [Appendix F] 

 In the σyy field, two large compressive zones show the locations of the stresses 

created by the rollers.  Less obvious is the tensile region coupled to the upper roller. For 

the ‘strong’ configuration, this stress is much higher and broader than the tensile region 

in its ‘weak’ counterpart.  

 The 2D shear stress field, σxy , has four distinctive regions of interest:  the lower 

roller, the upper roller, the mid-zone, and the tensile coupling to the upper roller.  In the 

‘strong’ configuration, the higher shear stresses again gravitate towards the stiffer tensile 

region.  This could have been predicted by the behavior of the prior two examined fields.  

 Finally, the Von Mises shows the combined effects from the σxx, σyy, and σzz.   As 

was concluded from the σxx, the higher stresses are found in the region of the stiffest 

material, the 85% Ti/TiB.  

 When comparing these results to the failure behavior, it becomes more obvious as 

to the definitive reason as to why the FGM was stronger than both the uniform Ti and 

uniform 85% TiB / 15% Ti.  Not only did the FGM take advantage of placing the ceramic 

in compression to negate the obvious weakness of ceramic tensile rupture, but it also 
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diverted some of the strain energy away from the weaker titanium layer.  This assumes 

that the titanium is undesirable after yield.  Therefore, when optimizing a functionally 

graded structure, it is very important to recognize this tradeoff in order to maximize the 

strength. 
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CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

  During this testing, the digital image correlation was found to be the better 

choice than differential thermography for acquiring accurate field measurement for 

several reasons.  First, the values acquired by the digital image correlation system were 

independent of the material system in usage.  This means that any layering configuration 

of the Ti/TiB functionally graded material could have been used to acquire meaningful 

data.  Not only does the differential thermography system require some form of strain 

gage on each layer to measure stress, but it also dictated that the load spectrum had to be 

varied at a high enough frequency to acquire photons emitted due to the thermoelastic 

effect.  The D.I.C. camera was also less sensitive to environmental easier to set up as it 

did not require cooling nor calibration for 2D imagery.  Furthermore, because definitive 

magnitudes of strain were achieved, the results could be compared with finite element 

results quite effectively.  Differential thermography would have been much more 

successful if a calibration value could have been determined.  This would have resulted in 

actual stress magnitudes rather than normalized results. 

 In the laboratory, the fiber optic strain gages offered very little benefit over the 

digital image correlation because it measured only a fragment of the total amount the 

same field data.  Furthermore, the fiber gages provided an averaging of the strain about 

the fiber sensor length; this was not very beneficial for attempting to measure the region 

across each of the material boundaries.  However, the real benefit of the fiber optic 

system is that it does not require a stationary camera system.  In scenarios where space, 
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lighting, and a level surface are not available, the fiber optic gages may be the ideal 

choice to use to measure a linear region of the strain field. 

 Finally, conventional strain gages worked reasonable well under the laboratory air 

and room temperature conditions.  However, if specimens were subjected to varying or 

higher temperature conditions, calibrating the gages and selecting the proper gages would 

become significantly because the gages would have to be temperature compensated.  Not 

only would interlayer zones be very difficult to calibrate but batch material variation 

amongst the uniform layered ceramic composites would also be of concern.  Furthermore, 

when selecting a strain gage, a different gage would have to be chosen for each layer for 

optimal results.  

Another conclusion is that the finite element modeling accurately predicted the 

elastic behavior of a functionally graded titanium/titanium boride beam under small 

displacements.  Although this was not the main purpose of this work, the overlay of the 

finite element results strain field to the digital image correlation showed excellent 

correlation between laboratory testing and numerical results.  Furthermore, a novel 

approach to finding the location of the neutral axis or neutral ‘boundary’ was also 

determined.    

Also of some interest, the reported surfaces of the functionally graded Ti/TiB and 

uniform 85% TiB / 15% Ti were observed.  It was seen that the rupture face of the 

composite lacked the same brittle rupture characteristics of the 85% TiB / 15% Ti.  When 

comparing the permanent deformation of the FGM in the ‘weak’ and ‘strong 

configurations, uniform Ti, and uniform 85% TiB / 15% Ti when loaded up to 20K lbs, it 
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was found that the functionally graded material in the ‘strong’ configuration was the best 

design configuration. 
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5.2 Recommendations 

An advantage of digital image correlation is that it has the potential to view 

images at the smaller level based upon the resolution of a microscope rather than a 

conventional camera.  Zang and others have already investigated the use of this type of 

system to measure the elastic modulus in this fashion. [Zang, 2005]  Smaller scale 

analysis for functionally graded materials would be particularly valuable in that interfaces 

between layers or layering gradients could more accurately measured.  At the current 

scale run during these experiments, a pixel would span approximately 1/100”.  If zoomed 

in ten to one hundred times, the change in strain about that region could be more readily 

deciphered.  This information could be used to gauge the quality of the layer bonding and 

the material system.  

Fiber optic gages proved to be very likely to break for this form of testing.  When 

designing specimens, a larger, flatter work surface would be more ideal for usage of the 

fiber gages.  Also tools for more accurately laying the gages would have helped to reduce 

fiber ‘bowing’. 

 Before the work began, it was believed that the material properties had tighter 

bounds.  Better knowledge of the elastic properties of the Ti/TiB layers could have 

possibly improved the analysis of the functionally graded system in conjunction with the 

laboratory results.    
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Appendix A –Specimen Configuration Matrix 

      Fiber  

Specimen ID Material Front Top Back BottomDirection Top Face 

s01 Low-Carbon Steel D.I.C. Gage   Gage     

s02 Low-Carbon Steel D.I.C. Gage   Gage     

s03 Low-Carbon Steel D.I.C. Gage   Gage     

s04 Low-Carbon Steel D. T. Gage  Gage   

s05 Low-Carbon Steel D. T. Gage  Gage   

s06 Low-Carbon Steel D. T. Gage  Gage   

t01 Comercially Pure Titanium D.I.C. GageFibers Gage H   

t02 Comercially Pure Titanium D.I.C. GageFibers Gage H   

t03 Comercially Pure Titanium D.I.C. GageFibers Gage V   

t04 Comercially Pure Titanium D. T. Gage  Gage   

t05 Comercially Pure Titanium D. T. Gage  Gage   

t06 Comercially Pure Titanium D. T. Gage  Gage   

b01 85% TiB / 15% C.P. Ti D.I.C. GageFibers Gage H   

b02 85% TiB / 15% C.P. Ti D.I.C. GageFibers Gage H   

b03 85% TiB / 15% C.P. Ti D.I.C. GageFibers Gage V   

b04 85% TiB / 15% C.P. Ti D. T. Gage  Gage   

b05 85% TiB / 15% C.P. Ti D. T. Gage  Gage   

b06 85% TiB / 15% C.P. Ti D. T. Gage  Gage   

f01 Ti/TiB FGM D.I.C. GageFibers Gage H cp Ti 

f02 Ti/TiB FGM D.I.C. GageFibers Gage H cp Ti 

f03 Ti/TiB FGM D.I.C. GageFibers Gage H cp Ti 

f04 Ti/TiB FGM D.I.C. GageFibers Gage V TiB 

f05 Ti/TiB FGM D.I.C. GageFibers Gage V TiB 

f06 Ti/TiB FGM D.I.C. GageFibers Gage V TiB 
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f07 Ti/TiB FGM D. T. GageFibers Gage V cp Ti 

f08 Ti/TiB FGM D. T. GageFibers Gage V cp Ti 

f09 Ti/TiB FGM D. T. GageFibers Gage V cp Ti 

f10 Ti/TiB FGM D. T. GageFibers Gage H TiB 

f11 Ti/TiB FGM D. T. GageFibers Gage H TiB 

f12 Ti/TiB FGM D. T. GageFibers Gage H TiB 
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Appendix B –Test Matrix 

Specimen ID Material Front Config. Tested S.G. D.I.C. D.T. Fiber

t01 Comercially Pure Titanium D.I.C.            

t02 Comercially Pure Titanium D.I.C.   X    X*     

t03 Comercially Pure Titanium D.I.C.             

t04 Comercially Pure Titanium D. T.       

t05 Comercially Pure Titanium D. T.  X   X*  

t06 Comercially Pure Titanium D. T.       

b01 85% TiB / 15% C.P. Ti D.I.C.             

b02 85% TiB / 15% C.P. Ti D.I.C.   X   X*     

b03 85% TiB / 15% C.P. Ti D.I.C.             

b04 85% TiB / 15% C.P. Ti D. T.       

b05 85% TiB / 15% C.P. Ti D. T.  X  X*  X 

b06 85% TiB / 15% C.P. Ti D. T.       

f01 Ti/TiB FGM D.I.C. weak X     X* X 

f02 Ti/TiB FGM D.I.C. weak           

f03 Ti/TiB FGM D.I.C. weak           

f04 Ti/TiB FGM D.I.C. strong X X*    

f05 Ti/TiB FGM D.I.C. strong X X    

f06 Ti/TiB FGM D.I.C. strong X     

f07 Ti/TiB FGM D. T. weak X      X*   

f08 Ti/TiB FGM D. T. weak X         

f09 Ti/TiB FGM D. T. weak X         

f10 Ti/TiB FGM D. T. strong X X   X* X 

f11 Ti/TiB FGM D. T. strong      

f12 Ti/TiB FGM D. T. strong      

X* Data was tested but did not yield presentable results 
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 Appendix D – Digital image correlation results for ‘strong’ FGM at different 
contour limits 

 

+/-3000 μstrain 

 53 

 

+/-1000 μstrain 

+/-2000 μstrain 



 
+/-500 μstrain 

 
+/- 0 μstrain 
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Appendix D – Comparison of Ti/TiB Elastic Material Property Values 
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Appendix E – Digital Image Correlation / Finite Element Analysis Overlays 
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Appendix F – ‘Strong’ and ‘Weak’ FGM Stress Fields at 10K with FEM 
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